Dependence of Shape-Based Descriptors and Mass Segmentation Areas on Initial Contour Placement Using the Chan-Vese Method on Digital Mammograms

نویسندگان

  • Sussan N. Acho
  • W. I. D. Rae
چکیده

Variation in signal intensity within mass lesions and missing boundary information are intensity inhomogeneities inherent in digital mammograms. These inhomogeneities render the performance of a deformable contour susceptible to the location of its initial position and may lead to poor segmentation results for these images. We investigate the dependence of shape-based descriptors and mass segmentation areas on initial contour placement with the Chan-Vese segmentation method and compare these results to the active contours with selective local or global segmentation model. For each mass lesion, final contours were obtained by propagation of a proposed initial level set contour and by propagation of a manually drawn contour enclosing the region of interest. Differences in shape-based descriptors were quantified using absolute percentage differences, Euclidean distances, and Bland-Altman analysis. Segmented areas were evaluated with the area overlap measure. Differences were dependent upon the characteristics of the mass margins. Boundary moments presented large percentage differences. Pearson correlation analysis showed statistically significant correlations between shape-based descriptors from both initial locations. In conclusion, boundary moments of digital mass lesions are sensitive to the placement of initial level set contours while shape-based descriptors such as Fourier descriptors, shape convexity, and shape rectangularity exhibit a certain degree of robustness to changes in the location of the initial level set contours for both segmentation algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images

Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...

متن کامل

Mammography Image Segmentation: Chan-Vese Active Contour and Localised Active Contour Approach

Breast cancer is one of the most common diseases diagnosed among female cancer patients. Early detection of breast cancer is needed to reduce the risk of fatality of this disease as no cure has been found yet for this illness. This research is conducted to improve the Gradient Vector Flow (GVF) Snake Active Contour segmentation technique in mammography segmentation. Segmentation of the mammogra...

متن کامل

DIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION

Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...

متن کامل

A dual-stage method for lesion segmentation on digital mammograms.

Mass lesion segmentation on mammograms is a challenging task since mass lesions are usually embedded and hidden in varying densities of parenchymal tissue structures. In this article, we present a method for automatic delineation of lesion boundaries on digital mammograms. This method utilizes a geometric active contour model that minimizes an energy function based on the homogeneities inside a...

متن کامل

Skull Stripping of Mri Head Scans Based on Chan-vese Active Contour Model

Whole brain segmentation referred as skull stripping, it is an important process in neuriomage analysis. Automatic segmentation of brain tissues from magnetic resonance images (MRI) remains a challenging task due to variation in shape and size, use of different pulse sequences, overlapping signal intensities and imaging artifacts. Level sets and active contour methods have tremendous potential ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015